3 research outputs found

    Technical Design Report for PANDA Electromagnetic Calorimeter (EMC)

    No full text
    This document presents the technical layout and the envisaged performance of the Electromagnetic Calorimeter (EMC) for the PANDA target spectrometer. The EMC has been designed to meet the physics goals of the PANDA experiment, which is being developed for the Facility for Antiproton and Ion Research (FAIR) at Darmstadt, Germany. The performance figures are based on extensive prototype tests and radiation hardness studies. The document shows that the EMC is ready for construction up to the front-end electronics interface

    Eperimental access to Transition Distribution Amplitudes with the PANDA experiment at FAIR

    No full text
    We address the possibility of accessing nucleon-to-pion (πN) Transition Distribution Amplitudes (TDAs) from p¯p→e+e−π0 reaction with the future \={P}ANDA detector at the FAIR facility. At high center of mass energy and high invariant mass of the lepton pair q2, the amplitude of the signal channel p¯p→e+e−π0 admits a QCD factorized description in terms of πN TDAs and nucleon Distribution Amplitudes (DAs) in the forward and backward kinematic regimes. Assuming the validity of this factorized description, we perform feasibility studies for measuring p¯p→e+e−π0 with the \={P}ANDA detector. Detailed simulations on signal reconstruction efficiency as well as on rejection of the most severe background channel, {\it i.e.} p¯p→π+π−π0 were performed for the center of mass energy squared s=5 GeV2 and s=10 GeV2, in the kinematic regions 3.00.5 in the proton-antiproton center of mass frame. Results of the simulation show that the particle identification capabilities of the \={P}ANDA detector will allow to achieve a background rejection factor at the level of 108 (2⋅107) at low (high) q2 while keeping the signal reconstruction efficiency at around 40% and that a clean lepton signal can be reconstructed with the expected statistics corresponding to 2 fb−1 of integrated luminosity. The future measurement of the signal channel cross section with \={P}ANDA will provide a new test of perturbative QCD description of a novel class of hard exclusive reactions and will open the possibility of experimentally accessing πN TDAs
    corecore